Authors

* External authors

Venue

Date

Share

Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

Sikai Bai*

Shuaicheng Li*

Weiming Zhuang

Jie Zhang*

Kunlin Yang*

Jun Hou*

Shuai Yi*

Shuai Zhang*

Junyu Gao*

* External authors

AAAI 2024

2024

Abstract

Federated learning has become a popular method to learn from decentralized heterogeneous data. Federated semi-supervised learning (FSSL) emerges to train models from a small fraction of labeled data due to label scarcity on decentralized clients. Existing FSSL methods assume independent and identically distributed (IID) labeled data across clients and consistent class distribution between labeled and unlabeled data within a client. This work studies a more practical and challenging scenario of FSSL, where data distribution is different not only across clients but also within a client between labeled and unlabeled data. To address this challenge, we propose a novel FSSL framework with dual regulators, FedDure.} FedDure lifts the previous assumption with a coarse-grained regulator (C-reg) and a fine-grained regulator (F-reg): C-reg regularizes the updating of the local model by tracking the learning effect on labeled data distribution; F-reg learns an adaptive weighting scheme tailored for unlabeled instances in each client. We further formulate the client model training as bi-level optimization that adaptively optimizes the model in the client with two regulators. Theoretically, we show the convergence guarantee of the dual regulators. Empirically, we demonstrate that FedDure is superior to the existing methods across a wide range of settings, notably by more than 11% on CIFAR-10 and CINIC-10 datasets.

Related Publications

Argus: A Compact and Versatile Foundation Model for Vision

CVPR, 2025
Weiming Zhuang, Chen Chen, Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Jiabo Huang, Vikash Sehwag, Vivek Sharma, Hirotaka Shinozaki, Felan Carlo Garcia, Yihao Zhan, Naohiro Adachi, Ryoji Eki, Michael Spranger, Peter Stone, Lingjuan Lyu

While existing vision and multi-modal foundation models can handle multiple computer vision tasks, they often suffer from significant limitations, including huge demand for data and computational resources during training and inconsistent performance across vision tasks at d…

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

COALA: A Practical and Vision-Centric Federated Learning Platform

ICML, 2024
Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu

We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize as task, data, and model levels. At the task level, COALA extends support from simple classification to 15 computer vision tasks, in…

  • HOME
  • Publications
  • Combating Data Imbalances in Federated Semi-supervised Learning with Dual Regulators

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.